186 research outputs found

    Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw

    Get PDF
    Acknowledgements This work was supported by the National Natural Science Foundation of China (31988102, 31825006, 91837312, and 32101332), the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0106 and 2019QZKK0302), and the Fundamental Research Foundation of Chinese Academy of Forestry (CAFYBB2020MA008).Peer reviewedPublisher PD

    Biomass carbon stocks and their changes in northern China's grasslands during 1982-2006

    Get PDF
    Grassland covers approximately one-third of the area of China and plays an important role in the global terrestrial carbon (C) cycle. However, little is known about biomass C stocks and dynamics in these grasslands. During 2001-2005, we conducted five consecutive field sampling campaigns to investigate above-and below-ground biomass for northern China's grasslands. Using measurements obtained from 341 sampling sites, together with a NDVI (normalized difference vegetation index) time series dataset over 1982-2006, we examined changes in biomass C stock during the past 25 years. Our results showed that biomass C stock in northern China's grasslands was estimated at 557.5 Tg C (1 Tg=10(12) g), with a mean density of 39.5 g C m(-2) for above-ground biomass and 244.6 g C m(-2) for below-ground biomass. An increasing rate of 0.2 Tg C yr(-1) has been observed over the past 25 years, but grassland biomass has not experienced a significant change since the late 1980s. Seasonal rainfall (January-July) was the dominant factor driving temporal dynamics in biomass C stock; however, the responses of grassland biomass to climate variables differed among various grassland types. Biomass in arid grasslands (i.e., desert steppe and typical steppe) was significantly associated with precipitation, while biomass in humid grasslands (i.e., alpine meadow) was positively correlated with mean January-July temperatures. These results suggest that different grassland ecosystems in China may show diverse responses to future climate changes

    Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes

    Get PDF
    Soil priming is a microbial-driven process, which determines key soil–climate feedbacks in response to fresh carbon inputs. Despite its importance, the microbial traits behind this process are largely undetermined. Knowledge of the role of these traits is integral to advance our understanding of how soil microbes regulate carbon (C) emissions in forests, which support the largest soil carbon stocks globally. Using metagenomic sequencing and C-glucose, we provide unprecedented evidence that microbial traits explain a unique portion of the variation in soil priming across forest biomes from tropical to cold temperature regions. We show that microbial functional profiles associated with the degradation of labile C, especially rapid simple sugar metabolism, drive soil priming in different forests. Genes involved in the degradation of lignin and aromatic compounds were negatively associated with priming effects in temperate forests, whereas the highest level of soil priming was associated with β-glucosidase genes in tropical/subtropical forests. Moreover, we reconstructed, for the first time, 42 whole bacterial genomes associated with the soil priming effect and found that these organisms support important gene machinery involved in priming effect. Collectively, our work demonstrates the importance of microbial traits to explain soil priming across forest biomes and suggests that rapid carbon metabolism is responsible for priming effects in forests. This knowledge is important because it advances our understanding on the microbial mechanisms mediating soil–climate feedbacks at a continental scale.This work were financially supported by the National Natural Science Foundation of China (41907031), the Chinese Academy of Sciences “Light of West China” Program for Introduced Talent in the West, the National Natural Science Foundation of China (31570440, 31270484), the Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province, China (2020KWZ-010), the 2021 First Funds for Central Government to Guide Local Science and Technology Development in Qinghai Province (2021ZY002), the i-LINK +2018 (LINKA20069) from CSIC, and a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I

    Permafrost

    Get PDF
    Permafrost is perennially frozen ground, such as soil, rock, and ice. In permafrost regions, plant and microbial life persists primarily in the near-surface soil that thaws every summer, called the ‘active layer’ (Figure 20). The cold and wet conditions in many permafrost regions limit decomposition of organic matter. In combination with soil mixing processes caused by repeated freezing and thawing, this has led to the accumulation of large stocks of soil organic carbon in the permafrost zone over multi-millennial timescales. As the climate warms, permafrost carbon could be highly vulnerable to climatic warming. Permafrost occurs primarily in high latitudes (e.g. Arctic and Antarctic) and at high elevation (e.g. Tibetan Plateau, Figure 21). The thickness of permafrost varies from less than 1 m (in boreal peatlands) to more than 1 500 m (in Yakutia). The coldest permafrost is found in the Transantarctic Mountains in Antarctica (−36°C) and in northern Canada for the Northern Hemisphere (-15°C; Obu et al., 2019, 2020). In contrast, some of the warmest permafrost occurs in peatlands in areas with mean air temperatures above 0°C. Here permafrost exists because thick peat layers insulate the ground during the summer. Most of the permafrost existing today formed during cold glacials (e.g. before 12 000 years ago) and has persisted through warmer interglacials. Some shallow permafrost (max 30–70m depth) formed during the Holocene (past 5000 years) and some even during the Little Ice Age from 400–150 years ago. There are few extensive regions suitable for row crop agriculture in the permafrost zone. Additionally, in areas where large-scale agriculture has been conducted, ground destabilization has been common. Surface disturbance such as plowing or trampling of vegetation can alter the thermal regime of the soil, potentially triggering surface subsidence or abrupt collapse. This may influence soil hydrology, nutrient cycling, and organic matter storage. These changes often have acute and negative consequences for continued agricultural use of such landscapes. Thus, row-crop agriculture could have a negative impact on permafrost (e.g. Grünzweig et al., 2014). Conversely, animal husbandry is widespread in the permafrost zone, including horses, cattle, and reindeer

    Global patterns of woody residence time and its influence on model simulation of aboveground biomass

    Get PDF
    Woody residence time (τw) is an important parameter that expresses the balance between mature forest recruitment/growth and mortality. Using field data collected from the literature, this study explored the global forest τw and investigated its influence on model simulations of aboveground biomass (AGB) at a global scale. Specifically, τw was found to be related to forest age, annual temperature, and precipitation at a global scale, but its determinants were different among various plant function types. The estimated global forest τw based on the filed data showed large spatial heterogeneity, which plays an important role in model simulation of AGB by a dynamic global vegetation model (DGVM). The τw could change the resulting AGB in tenfold based on a site-level test using the Monte Carlo method. At the global level, different parameterization schemes of the Integrated Biosphere Simulator using the estimated τw resulted in a twofold change in the AGB simulation for 2100. Our results highlight the influences of various biotic and abiotic variables on forest τw. The estimation of τw in our study may help improve the model simulations and reduce the parameter\u27s uncertainty over the projection of future AGB in the current DGVM or Earth System Models. A clearer understanding of the responses of τw to climate change and the corresponding sophisticated description of forest growth/mortality in model structure is also needed for the improvement of carbon stock prediction in future studies

    The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region

    Get PDF
    Data and code availability The authors declare that the majority of the data supporting the findings of this study are available through the links given in the paper. The unpublished data are available from the corresponding author upon request. The new estimate of Tibetan soil carbon stock and R code are available in a persistent repository (https://figshare.com/s/4374f28d880f366eff6d). Acknowledgements This study was supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (XDA20050101), the National Natural Science Foundation of China (41871104), Key Research and Development Programs for Global Change and Adaptation (2017YFA0603604), International Partnership Program of the Chinese Academy of Sciences (131C11KYSB20160061) and the Thousand Youth Talents Plan project in China. Jinzhi Ding acknowledges the General (2017M620922) and the Special Grade (2018T110144) of the Financial Grant from the China Postdoctoral Science Foundation.Peer reviewedPublisher PD

    Patterns and drivers of prokaryotic communities in thermokarst lake water across Northern Hemisphere

    Get PDF
    13 páginas.- 5 figuras.- 81referencias.Aim: The formation of thermokarst lakes could make a large amount of carbon accessible to microbial degradation, potentially intensifying the permafrost carbon-climate feedback via carbon dioxide/methane emissions. Because of their diverse functional roles, prokaryotes could strongly mediate biogeochemical cycles in thermokarst lakes. However, little is known about the large-scale patterns and drivers of these communities. Location: Permafrost regions in the Northern Hemisphere. Time period: Present day. Major taxa studied: Prokaryotes. Methods: Based on a combination of large-scale measurements on the Tibetan Plateau and data syntheses in pan-Arctic regions, we constructed a comprehensive dataset of 16S rRNA sequences from 258 thermokarst lakes across Northern Hemisphere permafrost regions. We also used the local contributions to beta diversity (LCBD) to characterize the variance of prokaryotic species composition and screened underlying drivers by conducting a random forest modelling analysis. Results: Prokaryotes in thermokarst lake water were dominated by the orders Burkholderiales, Micrococcales, Flavobacteriales and Frankiales. The relative abundance of dominant taxa was positively associated with dissolved organic matter (DOM) properties, especially for the chromophoric/aromatic compounds. Microbial structure differed between high-altitude and high-latitude thermokarst lakes, with the dominance of Flavobacterium in high-altitude lakes, and the enrichment of Polynucleobacter in high-latitude lakes. More importantly, climatic variables were among the main drivers shaping the large-scale variation of prokaryotic communities. Specifically, mean annual precipitation was the best predictor for prokaryotic beta diversity across the Northern Hemisphere, as well as in the high-altitude permafrost regions, while mean annual air temperature played a key role in the high-latitude thermokarst lakes. Main conclusions: Our findings demonstrate significant associations between dominant taxa and DOM properties, as well as the important role of climatic factors in affecting prokaryotic communities. These findings suggest that climatic change may alter DOM conditions and induce dynamics in prokaryotic communities of thermokarst lake water in the Northern Hemisphere. © 2023 John Wiley & Sons Ltd.This work was supported by the National Key Research and Development Program of China (2022YFF0801903), National Natural Science Foundation of China (31988102, and 31825006), and Tencent Foundation through the XPLORER PRIZE. M.D‐B. acknowledges support from TED2021‐130908B‐C41/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020‐115813RA‐I00 funded by MCIN/AEI/10.13039/501100011033.Peer reviewe

    A globally relevant stock of soil nitrogen in the Yedoma permafrost domain

    Get PDF
    Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigatons) is stored in permafrost and therefore currently immobile and frozen. Here, we show that of this amount, ¾ is stored >3 metre depth, but if partially mobilised by thaw, this large nitrogen pool could have continental-scale consequences for soil and aquatic biogeochemistry and global-scale consequences for the permafrost feedback
    corecore